Almost Everywhere Convergence in Family of IF-events With Product

نویسنده

  • Katarína Lendelová
چکیده

The aim of this paper is to define the lower and upper limits on the family of IF-events with product. We compare two concepts of almost everywhere convergence and we show that they are equivalent, too.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

M-probability Theory on IF-events

Following M. Krachounov ([5]), max and min operations with fuzzy sets are considered instead of Lukasiewicz ones ([6], [7], [8], [9]). Her the domain F of a probability m : F → [0, 1] consists on IF-events A = (μA, νA) i.e. mappings from a measurable space (Ω,S) to the unit square ([1]). Local representation of sequences of M -observables by random variables is constructed and three kinds of co...

متن کامل

RANDOM SERIES IN L(X,Σ, μ) USING UNCONDITIONAL BASIC SEQUENCES AND l STABLE SEQUENCES: A RESULT ON ALMOST SURE ALMOST EVERYWHERE CONVERGENCE

Here we study the almost sure almost everywhere convergence of random series of the form ∑∞ i=1 aifi in the Lebesgue spaces L p(X,Σ, μ), where the ai’s are centered random variables, and the fi’s constitute an unconditional basic sequence or an lp stable sequence. We show that if one of these series converges in the norm topology almost surely, then it converges almost everywhere almost surely.

متن کامل

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

متن کامل

Almost Everywhere Convergence of Cone-like Restricted Double Fejér Means on Compact Totally Disconnected Groups

In the present paper we prove the a.e. convergence of Fejér means of integrable functions with respect to the two-dimensional representative product systems on a bounded compact totally disconnected group provided that the set of indices is in a cone-like set.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007